MIDTERM DIFFERENTIAL EQUATIONS SUMMARY

(1) First Order
(a) Linear

- Homogeneous: $y^{\prime}+p(t) y=0$
- Non-homogeneous(use variation of parameters): $y^{\prime}+p(t) y=g(t)$.
(b) Separable: $\frac{d y}{d t}=\frac{f(t)}{g(y)}$
(c) $\overline{\text { Exact: } M}(t, y)+N(t, y) \frac{d y}{d t}=0$ with $\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}=0$
(d) $\overline{\text { (Separable) Homogeneous } \frac{d y}{d t}=f(y / t), ~(y)}$
(e) General equation: $\frac{d y}{d t}=f(x, y)$
- Picard iterates
- Existence of solutions
(2) Second Order
(a) Liner
- Homogeneous: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$
- General theory: existence/uniqueness of solutions, linear independence of functions (Wronskian).
- Constant coefficients: $a y^{\prime \prime}+b y^{\prime}+c y=0$
* Repeated roots
* Complex roots
- Euler's equation: $a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0$
* Repeated roots
* Complex roots
- Series Solutions
* Regular equation
* Singular points
- Reduction of order: given y_{1}, find y_{2}.
- Non-homogeneous (variation of parameters): $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$

1. First Order Equations

1.1. Linear.

- Homogeneous: $y^{\prime}+p(t) y=0$
- Rewrite as $\frac{y^{\prime}}{y}=-p(t)$
- Integrate both sides

$$
\ln |y(t)|=-\int p(t) d t
$$

- Exponentiate both sides

$$
y=C e^{-\int p(t) d t}
$$

where C is arbitrary.

- Non-homogeneous equation: $y^{\prime}+p(t) y=g(t)$ (Variation of parameters)
- First solve the corresponding homogeneous equation $y_{h}^{\prime}+p(t) y_{h}=0 \Longrightarrow y_{h}=e^{-\int p(t) d t}$
- Look for a solution of the form

$$
y=u(t) y_{h}(t)
$$

- Plugging into the original equation and simplifying we have

$$
\begin{gathered}
u^{\prime}(t) y_{h}(t)=g(t) \\
u^{\prime}(t)=g(t) e^{\int p(t) d t} \\
y=e^{-\int p(t) d t} \int g(t) e^{\int p(t) d t} d t
\end{gathered}
$$

(Don't forget the constant of integration when evaluating $\int g(t) e^{\int p(t) d t} d t$)

1.2. Separable.

- $\frac{d y}{d t}=\frac{f(t)}{g(y)}$
- Rewrite as

$$
g(y) \frac{d y}{d t}=f(t)
$$

- Integrate both sides

$$
\int g(y) \frac{d y}{d t} d t=\int f(t) d t
$$

- Note that

$$
\int g(y) \frac{d y}{d t} d t=\int g(y) d y
$$

- Solve for y (if you can)
- Equation is called homogeneous (not to be confused with linear homogeneous) if it is given by

$$
\frac{d y}{d t}=f\left(\frac{y}{t}\right)
$$

One can then introduce a change of variables $v=\frac{y}{t}$ to get

$$
t \frac{d v}{d t}+v=f(v)
$$

which is a separable equation.

1.3. Exact.

- $M(t, y)+N(t, y) \frac{d y}{d t}=0$ with $\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}=0$
- Find $\psi(t, y)$ such that

$$
\begin{aligned}
& \frac{\partial \psi}{\partial t}=M \\
& \frac{\partial \psi}{\partial y}=N
\end{aligned}
$$

- The differential equation then becomes

$$
\frac{d}{d t} \psi=M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

and the solutions are given by

$$
\psi(t, y)=\text { const. }
$$

1.4. Existence of Solutions.

- $y^{\prime}=f(y, t) ; y\left(t_{0}\right)=y_{0}$
- Consider Picard iterates

$$
\begin{aligned}
y_{1}(t)= & y_{0}+\int_{t_{0}}^{t} f\left(y_{0}, s\right) d s \\
y_{2}(t) & =y_{1}\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(y_{1}(s), s\right) d s \\
& \vdots \\
y_{k}(t) & =y_{k-1}\left(t_{0}\right)+\int_{t_{0}}^{t} f\left(y_{k-1}(s), s\right) d s
\end{aligned}
$$

Theorem. Let f and $\frac{\partial f}{\partial y}$ be continuous in the rectangle $R: t_{0} \leq t \leq t_{0}+a,\left|y-y_{0}\right| \leq b$. Compute

$$
M=\max _{(t, y) \in R}|f(t, y)|
$$

and set

$$
\alpha=\min \left(a, \frac{b}{M}\right) .
$$

Then the initial-value problem $y^{\prime}=f(y, t) ; y\left(t_{0}\right)=y_{0}$ has a unique solution $y(t)$ on the interval $t_{0} \leq t \leq t_{0}+\alpha$ given by

$$
y(t)=\lim _{k \rightarrow \infty} y_{k}(t)
$$

where y_{k} are the Picard iterates.

2. Second Order Linear Equations

2.1. General theory.

Theorem 1. Given differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

if $p(t)$ and $q(t)$ are continuous on an interval $\alpha<t<\beta$, then there exists a unique solution to the equation with prescribed initial values $y\left(t_{0}\right), y^{\prime}\left(t_{0}\right)$ for any $t_{0} \in(\alpha, \beta)$.

- The above theorem implies that the general solutions to the differential equation $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$ is given by

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

where y_{1}, y_{2} are two linearly independent solutions.

- To see if functions y_{1}, y_{2} are linearly independent, compute the Wronskian

$$
W\left(y_{1}, y_{2}\right)(t):=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

If the Wronskian is not the zero function, then functions y_{1}, y_{2} are linearly independent.

- Reduction of order: Suppose we know one solution $y_{1}(t)$. A linearly independent solution is given by

$$
y_{2}=u(t) y_{1}(t)
$$

where $u(t)$ satisfies

$$
\frac{d u}{d t}=\frac{e^{-\int p(t) d t}}{y_{1}(t)^{2}}
$$

See pg. 146 of textbook for a proof.

2.2. Constant coefficients.

- $a y^{\prime \prime}+b y^{\prime}+c y=0$ where $a, b, c \in \mathbb{R}$ are constants.
- Use the ansatz $y=e^{r t}$
- Plugging into the original equation and simplifying we get the characteristic equation

$$
a r^{2}+b r+c=0
$$

- There are three cases
- Characteristic equation has two distinct real roots r_{1}, r_{2} : linearly independent solutions are

$$
y_{1}=e^{r_{1} t} \quad y_{2}=e^{r_{2} t}
$$

- Characteristic equation has a double real root r : linearly independent solutions are

$$
y_{1}=e^{r t} \quad y_{2}=t e^{r t}
$$

- Characteristic equation has complex roots $r=\alpha \pm \beta i$: linearly independent solutions are

$$
y_{1}=e^{\alpha t} \sin \beta t \quad y_{2}=e^{\alpha t} \cos \beta t
$$

2.3. Eulers equation.

- $a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0$ on the interval $(0, \infty)$ (similar story for $\left.(-\infty, 0)\right)$
- Use the ansatz $y=t^{r}$
- Plugging into the original equation and simplifying we get the characteristic equation

$$
\operatorname{ar}(r-1)+b r+c=0
$$

- There are three cases
- Characteristic equation has two distinct real roots r_{1}, r_{2} : linearly independent solutions are

$$
y_{1}=t^{r_{1}} \quad y_{2}=t^{r_{2}}
$$

- Characteristic equation has a double real root r : linearly independent solutions are

$$
y_{1}=t^{r} \quad y_{2}=\ln (t) t^{r}
$$

- Characteristic equation has complex roots $r=\alpha \pm \beta i$: linearly independent solutions are

$$
y_{1}=t^{\alpha} \sin (\beta \ln (t)) \quad y_{2}=t^{\alpha} \cos (\beta \ln (t))
$$

2.4. Series solution .

- Consider an equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ where $p(t), q(t)$ are analytic functions around a point t_{0}, i.e.

$$
\begin{aligned}
& p(t)=\sum_{i=0}^{\infty} p_{i}\left(t-t_{0}\right) \\
& q(t)=\sum_{i=0}^{\infty} q_{i}\left(t-t_{0}\right)
\end{aligned}
$$

with radii of convergence R_{p}, R_{q} respectively. Then the solutions to the differential equation are analytic at t_{0}, i.e.

$$
y(t)=\sum_{i=0}^{\infty} a_{i}\left(t-t_{0}\right)
$$

with radius of convergence R_{y} satisfying $R_{y} \geq \min \left(R_{p}, R_{q}\right)$.

- To find the solutions using the series method, plug in the ansatz $y(t)=\sum_{i=0}^{\infty} a_{i}\left(t-t_{0}\right)$ into the differential equation.
- Consider an equation $P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0$ where $P(t), Q(t), R(t)$ are analytic functions. We can rewrite this equation as $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. A point t_{0} is a singular point if $P(t)$ has a zero at t_{0} and $p(t)$ or $q(t)$ cannot be extended as analytic functions at t_{0}. A singular point t_{0} is called regular if

$$
\begin{aligned}
& \left(t-t_{0}\right) p(t)=\sum_{i=0}^{\infty} p_{i}\left(t-t_{0}\right) \\
& \left(t-t_{0}\right)^{2} q(t)=\sum_{i=0}^{\infty} q_{i}\left(t-t_{0}\right)
\end{aligned}
$$

i.e. if $\left(t-t_{0}\right) p(t)$ and $\left(t-t_{0}\right)^{2} q(t)$ can be extended as analytic functions at t_{0}. The indicial equation is then

$$
r(r-1)+p_{0} r+q_{0}=0
$$

2.5. Non-homogeneous equation- Variation of Parameters .

- Consider a non-homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$. A general solution has the form

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}
$$

where c_{1}, c_{2} are arbitrary constants, y_{p} is any solution of the non-homogeneous equation and y_{1}, y_{2} form a fundamental set of solutions of the corresponding homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.

- First solve the homogeneous equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ to find y_{1}, y_{2}. A particular solution is given by

$$
y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

where

$$
\begin{aligned}
\frac{d u_{1}}{d t} & =\frac{-g(t) y_{2}(t)}{W\left(y_{1}, y_{2}\right)(t)} \\
\frac{d u_{2}}{d t} & =\frac{g(t) y_{1}(t)}{W\left(y_{1}, y_{2}\right)(t)}
\end{aligned}
$$

see pg. 153 of the textbook for a proof.

