
MIDTERM DIFFERENTIAL EQUATIONS SUMMARY

(1) First Order
(a) Linear

• Homogeneous: y′ + p(t)y = 0
• Non-homogeneous(use variation of parameters): y′ + p(t)y = g(t).

(b) Separable: dy
dt

= f(t)
g(y)

(c) Exact: M(t, y) +N(t, y)dy
dt

= 0 with ∂M
∂y
− ∂N

∂t
= 0

(d) (Separable) Homogeneous dy
dt

= f(y/t)

(e) General equation: dy
dt

= f(x, y)
• Picard iterates
• Existence of solutions

(2) Second Order
(a) Liner

• Homogeneous: y′′ + p(t)y′ + q(t)y = 0
– General theory: existence/uniqueness of solutions, linear independence of

functions (Wronskian).
– Constant coefficients: ay′′ + by′ + cy = 0
∗ Repeated roots
∗ Complex roots

– Euler’s equation: at2y′′ + bty′ + cy = 0
∗ Repeated roots
∗ Complex roots

– Series Solutions
∗ Regular equation
∗ Singular points

– Reduction of order: given y1, find y2.
• Non-homogeneous (variation of parameters): y′′ + p(t)y′ + q(t)y = g(t)
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1. First Order Equations

1.1. Linear.
• Homogeneous: y′ + p(t)y = 0

– Rewrite as y′

y
= −p(t)

– Integrate both sides

ln |y(t)| = −
ˆ
p(t)dt

– Exponentiate both sides
y = Ce−

´
p(t)dt

where C is arbitrary.
• Non-homogeneous equation: y′ + p(t)y = g(t) (Variation of parameters)

– First solve the corresponding homogeneous equation y′h+p(t)yh = 0 =⇒ yh = e−
´
p(t)dt

– Look for a solution of the form

y = u(t)yh(t).

– Plugging into the original equation and simplifying we have

u′(t)yh(t) = g(t)

u′(t) = g(t)e
´
p(t)dt

y = e−
´
p(t)dt

ˆ
g(t)e

´
p(t)dtdt

(Don’t forget the constant of integration when evaluating
´
g(t)e

´
p(t)dtdt)

1.2. Separable.

• dy
dt

= f(t)
g(y)

• Rewrite as

g(y)
dy

dt
= f(t)

• Integrate both sides ˆ
g(y)

dy

dt
dt =

ˆ
f(t)dt

• Note that ˆ
g(y)

dy

dt
dt =

ˆ
g(y)dy

• Solve for y (if you can)
• Equation is called homogeneous (not to be confused with linear homogeneous) if it is
given by

dy

dt
= f(

y

t
).

One can then introduce a change of variables v = y
t
to get

t
dv

dt
+ v = f(v)

which is a separable equation.
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1.3. Exact.
• M(t, y) +N(t, y)dy

dt
= 0 with ∂M

∂y
− ∂N

∂t
= 0

• Find ψ(t, y) such that
∂ψ

∂t
=M

∂ψ

∂y
= N.

• The differential equation then becomes
d

dt
ψ =M(t, y) +N(t, y)

dy

dt
= 0

and the solutions are given by

ψ(t, y) = const.

1.4. Existence of Solutions.
• y′ = f(y, t); y(t0) = y0
• Consider Picard iterates

y1(t) = y0 +

ˆ t

t0

f(y0, s)ds

y2(t) = y1(t0) +

ˆ t

t0

f(y1(s), s)ds

...

yk(t) = yk−1(t0) +

ˆ t

t0

f(yk−1(s), s)ds

Theorem. Let f and ∂f
∂y

be continuous in the rectangle R : t0 ≤ t ≤ t0+ a, |y− y0| ≤ b. Compute

M = max
(t,y)∈R

|f(t, y)|

and set

α = min

(
a,

b

M

)
.

Then the initial-value problem y′ = f(y, t); y(t0) = y0 has a unique solution y(t) on the interval
t0 ≤ t ≤ t0 + α given by

y(t) = lim
k→∞

yk(t)

where yk are the Picard iterates.

2. Second Order Linear Equations

2.1. General theory.

Theorem 1. Given differential equation

y′′ + p(t)y′ + q(t)y = 0

if p(t) and q(t) are continuous on an interval α < t < β, then there exists a unique solution to the
equation with prescribed initial values y(t0), y′(t0) for any t0 ∈ (α, β).

• The above theorem implies that the general solutions to the differential equation y′′ +
p(t)y′ + q(t)y = 0 is given by

y = c1y1 + c2y2

where y1, y2 are two linearly independent solutions.
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• To see if functions y1, y2 are linearly independent, compute the Wronskian

W (y1, y2)(t) := y1(t)y
′
2(t)− y2(t)y′1(t)

If the Wronskian is not the zero function, then functions y1, y2 are linearly independent.
• Reduction of order: Suppose we know one solution y1(t). A linearly independent solu-
tion is given by

y2 = u(t)y1(t)

where u(t) satisfies
du

dt
=
e−
´
p(t)dt

y1(t)2
.

See pg. 146 of textbook for a proof.

2.2. Constant coefficients.
• ay′′ + by′ + cy = 0 where a, b, c ∈ R are constants.
• Use the ansatz y = ert

• Plugging into the original equation and simplifying we get the characteristic equation

ar2 + br + c = 0.

• There are three cases
– Characteristic equation has two distinct real roots r1, r2: linearly independent solu-

tions are
y1 = er1t y2 = er2t

– Characteristic equation has a double real root r: linearly independent solutions are

y1 = ert y2 = tert

– Characteristic equation has complex roots r = α± βi: linearly independent solutions
are

y1 = eαt sin βt y2 = eαt cos βt

2.3. Eulers equation.
• at2y′′ + bty′ + cy = 0 on the interval (0,∞) (similar story for (−∞, 0) )
• Use the ansatz y = tr

• Plugging into the original equation and simplifying we get the characteristic equation

ar(r − 1) + br + c = 0.

• There are three cases
– Characteristic equation has two distinct real roots r1, r2: linearly independent solu-

tions are
y1 = tr1 y2 = tr2

– Characteristic equation has a double real root r: linearly independent solutions are

y1 = tr y2 = ln(t)tr

– Characteristic equation has complex roots r = α± βi: linearly independent solutions
are

y1 = tα sin (β ln(t)) y2 = tα cos (β ln(t))
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2.4. Series solution .
• Consider an equation y′′+ p(t)y′+ q(t)y = 0 where p(t), q(t) are analytic functions around
a point t0, i.e.

p(t) =
∞∑
i=0

pi(t− t0)

q(t) =
∞∑
i=0

qi(t− t0)

with radii of convergence Rp, Rq respectively. Then the solutions to the differential equation
are analytic at t0, i.e.

y(t) =
∞∑
i=0

ai(t− t0)

with radius of convergence Ry satisfying Ry ≥ min(Rp, Rq).
• To find the solutions using the series method, plug in the ansatz y(t) =

∑∞
i=0 ai(t− t0) into

the differential equation.
• Consider an equation P (t)y′′ + Q(t)y′ + R(t)y = 0 where P (t), Q(t), R(t) are analytic
functions. We can rewrite this equation as y′′+p(t)y′+ q(t)y = 0. A point t0 is a singular
point if P (t) has a zero at t0 and p(t) or q(t) cannot be extended as analytic functions at
t0. A singular point t0 is called regular if

(t− t0)p(t) =
∞∑
i=0

pi(t− t0)

(t− t0)2q(t) =
∞∑
i=0

qi(t− t0)

i.e. if (t− t0)p(t) and (t− t0)2q(t) can be extended as analytic functions at t0. The indicial
equation is then

r(r − 1) + p0r + q0 = 0.

2.5. Non-homogeneous equation- Variation of Parameters .
• Consider a non-homogeneous equation y′′ + p(t)y′ + q(t)y = g(t). A general solution has
the form

y = yp + c1y1 + c2y2
where c1, c2 are arbitrary constants, yp is any solution of the non-homogeneous equation
and y1, y2 form a fundamental set of solutions of the corresponding homogeneous equation
y′′ + p(t)y′ + q(t)y = 0.
• First solve the homogeneous equation y′′ + p(t)y′ + q(t)y = 0 to find y1, y2. A particular
solution is given by

y(t) = u1(t)y1(t) + u2(t)y2(t)

where
du1
dt

=
−g(t)y2(t)
W (y1, y2)(t)

du2
dt

=
g(t)y1(t)

W (y1, y2)(t)
see pg. 153 of the textbook for a proof.
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